Jumat, 30 Agustus 2019

Persilangan Dihibrida

Materi IPA Kelas IX Hari Jum'at 30 Agustus 2019


Jika pada persilangan monohibrid kita hanya memperhatikan satu sifat beda saja, maka pada persilangan dihibrid kita akan memperhatikan dua sifat beda atau lebih. Misalnya warna buah dan bentuk buah, warna buah, bentuk buah, dan rasa buah, dsb. Pada persilangan dihibrid berlaku Hukum II Mendel karena pada saat pembentukan F2, gen di dalam gamet yang tadinya mengalami pemisahan kemudian akan bergabung secara bebas. Penggabungan secara bebas ini maksudnya adalah gen yang satu dapat secara bebas bergabung dengan gen yang lainnya tanpa adanya syarat tertentu.
Perhatikan contoh berikut!
Persilangan antara biji bulat kuning (BBKK) dengan biji kisut hijau (bbkk). Biji bulat (B) dominan terhadap biji kisut (b) dan warna kuning (K) dominan terhadap warna hijau (k). Lakukan persilangan sampai mendapat F2!
Penyelesaian:
Penyelesaian Dihibrid Hukum Mendel
hukum mendel dan persilangan
Sehingga, akan diperoleh F2 = bulat kuning (B_K_), bulat hijau (B_kk), kisut kuning (bbK_), kisut hijau (bbkk). 
Untuk perbandingan fenotipnya adalah sebagai berikut:
Perbandingan fenotip = bulat kuning : bulat hijau : kisut kuning : kisut hijau = 9 : 3 : 3 : 1.

Rabu, 28 Agustus 2019

Persilangan Monohibrida

Materi IPA kelas IX Hari Rabu 28 Agustus 2019


Persilangan monohibrid adalah persilangan dengan satu sifat beda. Maksudnya adalah pada persilangan ini kita hanya memperhatikan satu sifat saja, seperti warna bunga (merah, putih, dsb) atau bentuk buah (bulat, lonjong, dsb). Pada persilangan monohibrid berlaku Hukum Mendel I karena pada saat pembentukan gamet kedua (G2), gen di dalam alel yang sebelumnya berpasangan akan mengalami pemisahan secara bebas dalam dua sel anak (gamet). Secara bebas di sini maksudnya adalah pemisahan kedua gen tersebut tidak dipengaruhi atau mempengaruhi pasangan gen yang lainnya. Mendel melakukan persilangan monohibrid dengan satu sifat beda yang menunjukkan sifat dominansi yang muncul secara penuh dan sifat dominansi yang tidak muncul secara penuh (intermediet).
  • Kasus dominansi penuh
Persilangan pada kasus dominansi penuh akan terjadi apabila sifat gen yang satu lebih kuat dibandingkan dengan sifat gen yang lainnya. Akibatnya, sifat gen yang lebih kuat itu dapat menutupi sifat gen yang lemah. Dalam hal ini, gen yang memiliki sifat yang kuat disebut gen dominan dan gen yang memiliki sifat yang lemah disebut gen resesif.
Perhatikan contoh di bawah ini!
Persilangan antara bunga mawar merah (MM) dengan bunga mawar putih (mm) dengan gen M bersifat dominan penuh terhadap m. Lakukanlah persilangan sampai mendapatkan F2!
Penyelesaian:
Penyelesaian Monohibrid Hukum Mendel
Berdasarkan persilangan di atas, kita bisa mengetahui perbandingan fenotip dan genotipnya. Perlu diingat kalau fenotip adalah sifat yang tampak. Jadi, berdasarkan hasil F2 kita bisa tahu kalau perbandingan fenotipnya adalah 3 : 1 (3 sifat merah : 1 sifat putih). Sedangkan, untuk perbandingan genotipnya diperoleh MM : Mm : mm = 1 : 2 : 1.
  • Kasus dominansi tidak penuh (Intermediet)
Persilangan pada kasus intermediet terjadi apabila sifat dari kedua gen sama-sama kuat. Jadi, tidak ada gen yang bersifat dominan ataupun resesif.
Perhatikan contoh di bawah ini!
Persilangan antara bunga mawar merah (MM) dengan bunga mawar putih (mm) dengan M dan m sama-sama merupakan gen dominan. Lakukanlah persilangan sampai mendapatkan F2!
Penyelesaian:
Penyelesaian Monohibrid tidak penuh 
Bagaimana nih, Squad? Sampai di sini paham ya? Kalau begitu, ayo kita lanjut ke jenis persilangan yang kedua, yaitu persilangan dihibrid.

Selasa, 27 Agustus 2019

HUKUM MENDEL 2

Materi IPA kelas IX Hari Selasa 27 Agustus 2019


Hukum Mendel II
Hukum Mendel 2 dikenal juga sebagai Hukum Asortasi atau Hukum Berpasangan Secara Bebas. Menurut hukum ini, setiap gen/sifat dapat berpasangan secara bebas dengan gen/sifat lain. Meskipun demikian, gen untuk satu sifat tidak berpengaruh pada gen untuk sifat yang lain yang bukan termasuk alelnya.
Hukum Mendel 2 ini dapat dijelaskan melalui persilangan dihibrida, yaitu persilangan dengan dua sifat beda, dengan dua alel berbeda. Misalnya, bentuk biji (bulat+keriput) dan warna biji (kuning+hijau).Pada persilangan antara tanaman biji bulat warna kuning dengan biji keriput warna hijau diperoleh keturunan biji bulat warna kuning. Karena setiap gen dapat berpasangan secara bebas maka hasil persilangan antara F1 diperoleh tanaman bulat kuning, keriput kuning, bulat hijau dan keriput hijau.
Hukum Memdel 2 ini hanya berlaku untuk gen yang letaknya berjauhan. Jika kedua gen itu letaknya berdekatan hukum ini tidak berlaku. Hukum Mendel 2 ini juga tidak berlaku untuk persilangan monohibrid.
Perhatikan analisis papan catur di bawah ini tentang persilangan buncis dengan dua sifat beda (dihibrida).
Buncis biji bulat warna kuning disilangkan dengan biji keriput warna hijau.Keturunan pertama semuanya berbiji bulat warna kuning.
Artinya, sifat bulat dominan terhadap sifat keriput dan kuning dominan terhadap warna hijau. Persilangan antar F1 mengasilkan keturunan kedua (F2) sebagai berikut: 315 tanaman bulat kuning, 101 tanaman keriput kuning, 108 tanaman bulat hijau dan 32 keriput hijau. Jika diperhatikan, perbandingan antara tanaman bulat kuning : keriput kuning : bulat hijau : keriput hijau adalah mendekati 9:3:3:1.
P : BBKK (bulat, kuning) X bbkk (keriput, hijau)
F1 : BbKk (bulat, kuning)
F1XF1 : BbKk (bulat, kuning) X BbKk (bulat, kuning)
Gamet : BK, Bk, bK, bk BK, Bk, bK, bk
Gamet-gamet ini dapat berpasangan secara bebas (Hukum Mendel 2) sehingga F2 dapat digambarkan sebagai berikut:
Capture
Jadi, perbandingan homozigot terdapat pada kotak nomor 1,6,11 dan 16 sedangkan lainnya heterozigot.
Bastar konstan atau individu baru terdapat pada kotak nomor 6 dan 11. Bastar konstan adalah keturunan homozigot yang memiliki sifat baru (berbeda dengan kedua induknya), sehingga dalam persilangan antar sesamanya tidak memisah, konstan.

Senin, 26 Agustus 2019

HUKUM MENDEL 1

Materi IPA kelas IX Hari Senin 26 Agustus 2019










Hasil gambar untuk hukum mendel 1

PRINSIP HUKUM MENDEL 1

Hukum Mendel I
Hukum Mendel I dikenal juga dengan Hukum Segregasi menyatakan: ‘pada pembentukan gamet kedua gen yang merupakan pasangan akan dipisahkan dalam dua sel anak’. Hukum ini berlaku untuk persilangan monohibrid (persilangan dengan satu sifat beda).
Secara garis besar, hukum ini mencakup tiga pokok:
a. Gen memiliki bentuk-bentuk alternatif yang mengatur variasi pada karakter turunannya. Ini adalah konsep mengenai dua macam alel; alel resisif (tidak selalu nampak dari luar, dinyatakan dengan huruf kecil, misalnya w dalam gambar di sebelah), dan alel dominan (nampak dari luar, dinyatakan dengan huruf besar, misalnya R).
b. Setiap individu membawa sepasang gen, satu dari tetua jantan (misalnya ww dalam gambar di sebelah) dan satu dari tetua betina (misalnya RR dalam gambar di bawah ini).
c. Jika sepasang gen ini merupakan dua alel yang berbeda, alel dominan akan selalu terekspresikan (nampak secara visual dari luar). Alel resesif yang tidak selalu terekspresikan, tetap akan diwariskan pada gamet yang dibentuk pada turunannya

Jumat, 23 Agustus 2019

Peranan Materi Genetika dalam Penentuan Sifat

Materi Kelas 9 Hari Jum'at 23 Agustus 2019

Peranan Materi Genetik dalam Penentuan Sifat



Kita telah mengetahui DNA sebagai materi genetik yang membawa informasi genetik yang menentukan karakteristik makhluk hidup. Tahukah kamu bahwa karakteristik dan sifat pada setiap orang adalah warisan dari orang tua, yang diwariskan melalui materi genetik.

Amatilah cuping telinga kedua orang tua kita. Amati pula teman-teman di sekitarmu. Jika orang tua memiliki jenis cuping telinga yang melekat, maka semua anaknya pun juga memiliki jenis cuping telinga yang melekat. Namun bila salah satu dari orang tua memiliki jenis cuping telinga yang terpisah maka semua anaknya memiliki jenis cuping telinga yang terpisah, walaupun ada juga  salah satu anaknya memiliki jenis cuping telinga yang melekat.

Bentuk cuping terpisah (a0 dan melekat (b) merupakan hasil pewarisan sifat

Sifat Dominan dan Resesif


Dalam pewarisan sifat kita mengenal istilah sifat dominan dan sifat resesif. Sifat dominan adalah karakter yang mampu mengalahkan/menutupi karakter yang lain. Sedangkan sifat resesif adalah karakter yang kalah atau karakter yang tertutupi oleh karakter yang lain.

Gen dominan ditulis dengan huruf besar (kapital), sedangkan gen resesif cukup ditulis dengan huruf kecil saja. Contoh: cuping yang terpisah dikode oleh gen G (dominan), sedangkan karakter cuping yang melekat dikode oleh gen g (resesif).

Variasi atau bentuk alternatif dari gen-gen (pada kasus ini yaitu gen G dan gen g) disebut sebagai alel.

Perwujudan gen ini dapat dilihat oleh mata telanjang. Fenotip adalah sifat-sifat atau karakter yang dapat dilihat oleh mata, contoh: bentuk rambut dan bentuk cuping telinga. Fenotip merupakan perwujudan “ekspresi” dari gen. Sedangkan, genotip adalah susunan informasi genetik suatu individu yang mengkode karakter-karakter fisik.

Peran Gen dalam Menentukan Jenis Kelamin

Diagram kromosom perkawinan laki-laki dan perempuan

Kita perlu mengetahui bahwa susunan kromosom pada sel penyusun tubuh berbeda dengan susunan kromosom pada sel kelamin, baik itu sel telur atau ovum maupun sel sperma. Kromosom pada sel tubuh susunannya berpasangan atau diploid (2n), sedangkan susunan kromosom pada sel kelamin tidak berpasangan atau haploid (n). Sehingga kromosom pada sel kelamin berjumlah setengah dari kromosom sel tubuh.

Jumlah kromosom sel tubuh sebanyak 23 pasang. Jumlah total kromosomnya sebanyak 23 x 2 = 46 buah kromosom, karena diploid (2n). Kromosom nomor 1 - 22 disebut sebagai autosom (kromosom tubuh), sedangkan kromosom nomor 23 disebut gonosom(kromosom kelamin). Gonosom inilah yang membedakan laki-laki atau perempuan.

Penulisan kromosom kelamin atau gonosom laki-laki ditulis XY dan untuk perempuan ditulis XX. Dengan demikian, kariotipe atau susunan kromosom pada laki-laki  dapat dituliskan dengan rumus 22AA + XY. Sedangkan kariotipe atau susunan kromosom pada perempuan, ditulis dengan rumus 22AA + XX.

Pada sel kelamin, kromosom adalah haploid (tidak dalam keadaan berpasangan), maka kariotipe sel kelamin jantan (sperma) adalah 22A + X atau 22A + Y, sedangkan kariotipe sel kelamin betina (ovum) adalah 22A + X.

Sel-sel sperma ada yang mengandung kromosom kelamin Y dan ada pula yang mengandung kromosom kelamin X.

Gen-gen pada kromosom kelamin Y berperan dalam menentukan jenis kelamin pada manusia. Pada sel kelamin perempuan hanya terdapat autosom dan kromosom kelamin X saja. Jadi ketika sel ovum yang mengandung kromosom kelamin X bertemu dengan sel sperma yang mengandung kromosom kelamin X maka akan menghasilkan anak (keturunan) dengan jenis kelamin perempuan (XX).

Jika ovum yang mengandung kromosom kelamin X bertemu dengan sel sperma yang mengandung kromosom kelamin Y maka akan menghasilkan anak dengan jenis kelamin laki-laki (XY). Dalam proses pewarisan sifat, keturunan disebut dengan filial (F), sedangkan orangtua atau induk disebut dengan parental (P)

Rabu, 21 Agustus 2019

GENETIKA

Materi Kelas 9 Hari Rabu 21 Agustus 2019

Genetika (kata serapan dari bahasa Belanda: genetica, adaptasi dari bahasa Inggris: genetics, dibentuk dari kata bahasa Yunani: γέννω, genno yang berarti "melahirkan") adalah cabang biologi yang mempelajari pewarisan sifat pada organisme maupun suborganisme (seperti virus dan prion). Secara singkat dapat juga dikatakan bahwa genetika adalah ilmu tentang gen dan segala aspeknya. Istilah "genetika" diperkenalkan oleh William Bateson pada suatu surat pribadi kepada Adam Chadwick dan ia menggunakannya pada Konferensi Internasional tentang Genetika ke-3 pada tahun 1906.
Dalam kaitannya dengan genetika, DNA memiliki peran yang amat penting. DNA adalah bahan genetik mendasar yang mengontrol sifat-sifat makhluk hidup, tereskpresikan dalam bentuk polipeptida, meskipun tidak seluruhnya adalah protein (dapat diekspresikan sebagai RNA yang memiliki reaksi katalitik, seperti SNRPs).
Francis Crick menjelaskan aliran informasi yang dibawa oleh DNA dalam rangkaian The Central Dogma, yang berbunyi Aliran informasi DNA dapat diterukan ke sel-sel maupun individu lainnya dengan replikasi, dapat diekspresikan menjadi suatu sinyal perantara dalam bentuk RNA, yang kemudian dapat ditranslasikan menjadi polipeptida, unit pembangun suatu fenotipe dari organisme yang ada.
Bidang kajian genetika dimulai dari wilayah subselular (molekular) hingga populasi. Secara lebih rinci, genetika berusaha menjelaskan:

Awal mula dan konsep dasar

Periode pra-Mendel

Meskipun orang biasanya menetapkan genetika dimulai dengan ditemukannya kembali naskah artikel yang ditulis Gregor Mendel pada tahun 1900, sebenarnya genetika sebagai "ilmu pewarisan" atau hereditas sudah dikenal sejak masa prasejarah, seperti domestikasi dan pengembangan berbagai ras ternak dan kultivar tanaman. Orang juga sudah mengenal efek persilangan dan perkawinan sekerabat serta membuat sejumlah prosedur dan peraturan mengenai hal tersebut sejak sebelum genetika berdiri sebagai ilmu yang mandiri. Silsilah tentang penyakit pada keluarga, misalnya, sudah dikaji orang sebelum itu. Namun, pengetahuan praktis ini tidak memberikan penjelasan penyebab dari gejala-gejala itu.
Teori populer mengenai pewarisan yang dianut pada masa itu adalah teori pewarisan campur: seseorang mewariskan campuran rata dari sifat-sifat yang dibawa tetuanya, terutama dari pejantan karena membawa sperma. Hasil penelitian Mendel menunjukkan bahwa teori ini tidak berlaku karena sifat-sifat dibawa dalam kombinasi yang dibawa alel-alel khas, bukannya campuran rata. Pendapat terkait lainnya adalah teori Lamarck: sifat yang diperoleh tetua dalam hidupnya diwariskan kepada anaknya. Teori ini juga patah dengan penjelasan Mendel bahwa sifat yang dibawa oleh gen tidak dipengaruhi pengalaman individu yang mewariskan sifat itu[1]. Charles Darwin juga memberikan penjelasan dengan hipotesis pangenesis dan kemudian dimodifikasi oleh Francis Galton[2]. Dalam pendapat ini, sel-sel tubuh menghasilkan partikel-partikel yang disebut gemmula yang akan dikumpulkan di organ reproduksi sebelum pembuahan terjadi. Jadi, setiap sel dalam tubuh memiliki sumbangan bagi sifat-sifat yang akan dibawa zuriat (keturunan).
Pada masa pra-Mendel, orang belum mengenal gen dan kromosom (meskipun DNA sudah diekstraksi namun pada abad ke-19 belum diketahui fungsinya). Saat itu orang masih beranggapan bahwa sifat diwariskan lewat sperma (tetua betina tidak menyumbang apa pun terhadap sifat anaknya).

Konsep dasar

Peletakan dasar ilmiah melalui percobaan sistematik baru dilakukan pada paruh akhir abad ke-19 oleh Gregor Johann Mendel. Ia adalah seorang biarawan dari Brno (Brünn dalam bahasa Jerman), Kekaisaran Austro-Hungaria (sekarang bagian dari Republik Ceko). Mendel disepakati umum sebagai 'pendiri genetika' setelah karyanya "Versuche über Pflanzenhybriden" atau Percobaan mengenai Persilangan Tanaman (dipublikasi cetak pada tahun 1866) ditemukan kembali secara terpisah oleh Hugo de Vries, Carl Correns, dan Erich von Tschermak pada tahun 1900. Dalam karyanya itu, Mendel pertama kali menemukan bahwa pewarisan sifat pada tanaman (ia menggunakan tujuh sifat pada tanaman kapri, Pisum sativum) mengikuti sejumlah nisbah matematika yang sederhana. Yang lebih penting, ia dapat menjelaskan bagaimana nisbah-nisbah ini terjadi, melalui apa yang dikenal sebagai 'Hukum Pewarisan Mendel'.
Dari karya ini, orang mulai mengenal konsep gen (Mendel menyebutnya 'faktor'). Gen adalah pembawa sifat. Alel adalah ekspresi alternatif dari gen dalam kaitan dengan suatu sifat. Setiap individu disomik selalu memiliki sepasang alel, yang berkaitan dengan suatu sifat yang khas, masing-masing berasal dari tetuanya. Status dari pasangan alel ini dinamakan genotipe. Apabila suatu individu memiliki pasangan alel sama, genotipe individu itu bergenotipe homozigot, apabila pasangannya berbeda, genotipe individu yang bersangkutan dalam keadaan heterozigot. Genotipe terkait dengan sifat yang teramati. Sifat yang terkait dengan suatu genotipe disebut fenotipe.

Kronologi perkembangan genetika

Setelah penemuan ulang karya Mendel, genetika berkembang sangat pesat. Perkembangan genetika sering kali menjadi contoh klasik mengenai penggunaan metode ilmiah dalam ilmu pengetahuan atau sains.
Berikut adalah tahapan-tahapan perkembangan genetika:

Aplikasi Teori Blaise Pascal dan matematika pada genetika

Genetika muncul sebagai ilmu terapan yang dapat digunakan bersama dengan teori-teori matematika untuk mengekspresikan satuan unit gen dalam frekuensi kemunculannya, korelasi genotip dengan fenotip, dan sebagainya.
Aturan dasar dari Peluang yang umum digunakan dalam perhitungan Genetika ialah Hukum Perkalian dan Hukum Pertambahan
  1. P(A dan B) = P(A) x P(B)
  2. P(A atau B) = P(A) + P(B)
Karena pada umumnya suatu perkawinan monohibrid dengan dominasi total dan sempurna menghasilkan dua kemungkinan sifat (misal pada P= Aa >< Aa akan menghasilkan AA, Aa, dan aa), maka teori Binom Newton dapat diaplikasikan.
{\displaystyle {n \choose k}={\frac {n!}{k!(n-k)!}}}
Untuk AA dan Aa memberikan fenotip a, dan aa memberikan fenotip b, serta P(a) adalah peluang kemunculan a, dan P(b) peluang kemunculan b, maka dari binom diatas dapat dimodifikasi menjadi:
{\displaystyle P(N[a,b])=N!/(a!b!)P(a)^{a}P(b)^{b}}
Aturan Binom ini dapat dipersingkat menjadi segitiga pascal
Contoh 1: Berapakah peluang seorang pasangan memiliki 8 anak, di mana tidak terdiri dari 3 orang laki-laki dan 5 orang perempuan?
P(L) = Peluang mendapatkan laki-laki = 0.5
P(P) = Peluang mendapatkan perempuan = 0.5
Sehingga: P(N[3,5]) = 8!/(3!5!) x 0.53 x 0.55 = 0.21875
Karena yang dimaksud adalah keadaan tidak seperti yang telah dikalkulasi, maka peluang yang diharapkan ialah: 1-0.2875 = 0.7125
Contoh 2: Berapakah peluang seorang pasangan memiliki 8 anak, dengan urutan L, P, P, P, L, L, L, P?
Karena telah ditentukan sebelumnya bahwa anak-anak muncul dengan urutan tertentu, maka peluangnya adalah:
P(L) x P(P) x P(P) x P(P) x P(L) x P(L) x P(L) x P(P) = 0.58 = 0.0039

Cabang-cabang genetika

Genetika berkembang baik sebagai ilmu murni maupun ilmu terapan. Cabang-cabang ilmu ini terbentuk terutama sebagai akibat pendalaman terhadap suatu aspek tertentu dari objek kajiannya.
Cabang-cabang murni genetika:
Cabang-cabang terapan genetika:
Bioteknologi merupakan ilmu terapan yang tidak secara langsung merupakan cabang genetika tetapi sangat terkait dengan perkembangan di bidang genetika.

Genetika arah-balik (reverse genetics)

Kajian genetika klasik dimulai dari gejala fenotipe (yang tampak oleh pengamatan manusia) lalu dicarikan penjelasan genotipiknya hingga ke aras gen. Berkembangnya teknik-teknik dalam genetika molekular secara cepat dan efisien memunculkan filosofi baru dalam metodologi genetika, dengan membalik arah kajian. Karena banyak gen yang sudah diidentifikasi sekuensnya, orang memasukkan atau mengubah suatu gen dalam kromosom lalu melihat implikasi fenotipik yang terjadi. Teknik-teknik analisis yang menggunakan filosofi ini dikelompokkan dalam kajian genetika arah-balik atau reverse genetics, sementara teknik kajian genetika klasik dijuluki genetika arah-maju atau forward genetics.